USB Audio 2.0 Device Class Library
for Analog Devices ADSP-SC598

User’s Guide Revision 1.02

Closed Loop Design, LLC

I support@cld-Lllc.com I

Table of Contents

(D o] =111 S OO OURTPPRPPPPR 3
INEFOAUCTION. ...ttt ettt 3
USB BaCKGIOUNG.........eiiiiiiiiie ettt ettt e e e sttt e e e e ettt e e e e s st e e e e et e e e e e ansbn e e e e e nnsbeeeeennbeeeeeas 3
CLD Library USB Enumeration FIOW Chart.............cooiiiiiiiiiiiiicieeee e 4
CLD Library Interrupt IN FIOW Chart............ooviiiiiiiiie e 6
CLD Audio 2.0 Library 1sochronous OUT FIOW Chart............cccvveeiiiiiieeiiiiiie e 8
CLD Audio 2.0 Library Isochronous IN FIOW Chart ..o 9
USB Audio Device Class V2.0 BaCKQroundccoooiiiiiiiiiie it 10
Isochronous Endpoint Bandwidth ANIOCALION...........ccuviiiiiiiiiieiiiee e 11
USB Audio Device Class v2.0 Control Endpoint REQUESES.........cuveiiiiiiiiieiiiie e 11
=T oL T [T o 1= SRR 14
CLD SC598 Audio 2.0 Library Scope and Intended USE...........oooiuiiiieiiiiiiieeiiiiiie e 14
CLD Audio 2.0 Example V1.02 DeSCIPLION.uviiiiiieiiiieiiiee st e ettt e et 14
Running the EXampPIe PrOJECT..........cuviiiiieieee e st 14
CLD SC598 AU 2.0 LIDIANY APoe ettt e st e e e e e e s e e e e nnees 16
Cld_sc598_audio_2 0TI _INIT.......eiiiiiiiiiie e 16
cld sc598 audio 2 0 1D MAIN ...ueiiiiiiiiiii e 26
cld_audio_2 0 _lib_receive Stream _data...........cceiuerrieiiiiieeesiiiiee e e e e sneeee e 27
cld_audio_2_0_lib_transmit_audio_data...........c.cooiuriiiiiiiiiiie e 29
cld audio 2 0 w_transmit_interrupt data..........ccccceoviiiiiiiiiie e 31
cld_audio_2_0_lib_transmit_audio_rate_feedback data............ccccceeviuivriiiiiiiieiiiiie e, 33
cld_audio_2 0_lib_resume_paused_control transfer...........cccoovvvieiiiiiie e 35
Cld I USD CONNECT.......co o 36
Cld_ 1ib_USD dISCONNECT... ... e e e 36
ClA_tIME_125US TICK.....eeitieeitiie ettt et e e e b 36
Cld_USBO _iSI CAIIDACK.cci it e e a e e e 37
(o] o [0 € =T =] SR SOPRP 37
ClO_tIME_PASSEA M.ttt ettt e et e e 38
(o8 (o I T Lo o[- A 024 RSP PPRPRR 38
(o] o IO € o o SISt AT P STRRR 39
Cld_liD_STAtUS AECOUE........eeeieiiiiiee et e e e e e e 39

cld _lih access USh PRY Te0uuviiiiii e ———— 40

Adding the CLD SC598 Audio 2.0 Library to an Existing CrossCore Embedded Studio Project........ 41
User FIrMWare COO8 SNIPPETS.uveeeirieeiiiie ettt ettt e et e et e e b e e aeeas 43
L1 T o T PP PP TSP P TP PPPPPPPRPPN 43

LS o 44

Disclaimer

This software is supplied "AS I1S" without any warranties, express, implied or statutory, including but not
limited to the implied warranties of fitness for purpose, satisfactory quality and non-infringement. Closed
Loop Design LLC extends you a royalty-free right to use, reproduce, and distribute executable files
created using this software for use with Analog Devices ADSP-SC5xx family processors only. Nothing
else gives you the right to use this software.

Introduction

The Closed Loop Design (CLD) Audio 2.0 library creates a simplified interface for developinga USB
Audio v2.0 device using the Analog Devices EV-SOMCRR-EZKIT and the EV-SC598-SOM System-on-
Module boards. The CLD SC598 Audio 2.0 library also includes support for timer functions that
facilitate creating timed events quickly and easily. The library's User application interface is comprised
of parametersused to customize the library's functionality as well as callback functions used to notify the
User application of events. These parameters and functions are described in greater detail in the CLD
SC598 Audio 2.0 Library API section of this document.

USB Background

The following is a very basic overview of some of the USB concepts that are necessary to use the CLD
SC598 Audio 2.0 Library. However, it is still recommended that developers have at least a basic
understanding of the USB 2.0 protocol. The following are some resources to refer to when working with
USB, and USB Audio v2.0:

e The USB 2.0 Specification

e The USB Device Class Definition for Audio Devices v2.0,
The USB Device Class Definition for Audio Data Formats v.2.0
The USB Device Class Definition for Terminal Typesv.2.0

e USB ina Nutshell: A free online wiki that explains USB concepts.
http://www.beyondlogic.org/usbnutshell/usb1.shtml

e "USB Complete" by Jan Axelson ISBN: 1931448086

USB is a polling based protocol where the Host initiates all transfers, all USB terminology is from the
Host's perspective. For example an 'IN'transfer is when data is sent from a Device to the Host, and an
'OUT transfer is when the Host sends data to a Device.

The USB 2.0 protocol defines a basic framework that devices must implement in order to work correctly.
This framework is defined in the Chapter 9 of the USB 2.0 protocol, and is often referred to as the USB
‘Chapter 9' functionality. Part of the Chapter 9 framework is standard USB requests that a USB Host uses
to control the Device. Another part of the Chapter 9 framework is the USB Descriptors. These USB
Descriptors are used to notify the Host of the Device's capabilities when the Device is attached. The USB
Host uses the descriptors and the Chapter 9 standard requests to configure the Device. This process is
called USB Enumeration. The CLD library includes support for the USB standard requestsand USB
Enumeration using some of the parameters specified by the User application when initializing the library.
These parameters are discussed in the cld_sc598 audio_2 0 _lib_init section of thisdocument. The CLD
library facilitates USB enumeration and is Chapter 9 compliant without User Application intervention as
shown in the flow chart below. For additional information on USB Chapter 9 functionality or USB
Enumeration please referto one of the USB resources listed above.

https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
http://www.beyondlogic.org/usbnutshell/usb1.shtml

CLD Library USB Enumeration Flow Chart

‘ USB Cable Connected or USB Bus Reset

— :

Get Device Descriptor Request

Set USB Address

Get Device Descriptor Request

Get Configuration Descriptor Request

USB Enumeration

Set Configuration
(CLD library has 1 configuration)

Request String Descriptors

USB/External Event

USB Host Event

All USB data is transferred using Endpoints that act as a source or sink for data based on the endpoint's
direction (IN or OUT). The USB protocol defines four types of Endpoints, each of which has unique
characteristics that dictate howthey are used. The four Endpoint typesare: Control, Interrupt, Bulk, and
Isochronous. Datathat is transmitted over USB is broken up into blocks of data called packets. For each
endpoint type there are restrictions on the allowed max packet size. The allowed max packet sizes also

vary based on the USB connection speed. Please refer to the USB 2.0 protocol for more information
about the max packet size supported by the four endpoint types.

The CLD SC598 Audio 2.0 Library uses Control, Interrupt, and Isochronous endpoints, these endpoint
types will be discussed in more detail below.

A Control Endpoint is the only bi-directional endpoint type, and is typically used for command and status
transfers. A Control Endpoint transfer is made up of three stages (Setup Stage, Data Stage, and Status
Stage). The Setup Stage sets the direction and size of the optional Data Stage. The Data Stage is where
any data is transferred between the Host and Device. The Status Stage gives the Device the opportunity
to report if an errorwas detected during the transfer. All USB Devicesare required to include a default
Control Endpoint at endpoint number O, referred to as Endpoint 0. Endpoint 0 is used to implement all
the USB Protocol defined Chapter 9 framework and USB Enumeration. In the CLD library Endpoint O is
also used to handle the USB Audio Device Class v2.0 defined Set and Get requests. These requests are
discussed in more detail in the USB Audio Device Classv2.0 Background sections of this document

Interrupt Endpoints are used to transfer blocks of data where data integrity and deterministic timing is
required. Deterministic timing is achieved by allowing the Device to specify a requested interval used by
the Host to initiate USB transfers, which gives the Device a guaranteed maximum time between
opportunitiesto transfer data. Interrupt Endpoints are particularly useful when the Device needsto report
to the Host when a change is detected without having to wait for the Host to ask for the information. This
is more efficient then requiring the host to repeatedly send Control Endpoint requests asking if anything
has changed.

The flow charts below give an overview of howthe CLD Library and the User firmware interact to
process Interrupt IN transfers.

CLD Library Interrupt IN Flow Chart

Wait for the USB Host to issue a USB IN Token on the
Interrupt IN endpoint

Interrupt IN token

USB Host Event

Isochronous Endpoints have the following characteristics which make them well suited for streaming

audio data:

e Guaranteed USB bandwidth with bounded latency
e Constant datarate as long as data is provided to the endpoint.

e Intheeventofa transport error thereis no retrying.

These characteristics allow for streaming audio data to be transmitted with deterministic timing. In the
event of a USB transport error the audio data is dropped instead of being retried like a Bulk or Interrupt
endpoint. This allowsthe streaming audio data to remain in sync. The CLD library supportsan
Isochronous IN and Isochronous OUT endpoint, which are used to send and receive streaming audio data
with the USB Host, respectively.

The flow charts below give an overview of howthe CLD library and the User firmware interact to process
Isochronous OUT and Isochronous IN transfers. Additionally, the User firmware code snippets included
at the end of this document provide a basic framework for implementinga USB Audio v2.0 device using
the CLD SC598 Audio 2.0 Library.

CLD Audio 2.0 Library Isochronous OUT Flow Chart

USB Host Event

Isochronous OUT packet

=< z
I—I8 o

CLD Audio 2.0 Library Isochronous IN Flow Chart

Wait for the USB Host to issue a USB IN Token on the
Isochronous IN endpoint

Isochronous IN token

USB Host Event

USB Audio Device Class v2.0 Background

The following is a basic overview of some USB Audio Device v2.0 concepts that are necessary to use the
CLD SC598 Audio 2.0 Library. However, it is recommended that developers have at least a basic
understanding of the USB Audio Device Class v2.0 protocol.

The USB Audio Device Class v2.0 protocol is a USB Standard Class released by the USB IF committee,
and it provides a standardized way for a device that is capable of audio input/output to communicate with
a USB Host. The USB Audio Device Class v2.0 USB descriptors provide a detailed description of the
Device's capabilities. This information includes the Device's supported audio sample rate(s), audio data
format, input and output terminals and how the various audio processing components are connected and
controlled.

The Device'saudio processing capabilities are described using a series of USB Audio Class Terminal and
Unit Descriptors. The Terminal Descriptors define how audio data is input and output (speakers,
microphones, USB Isochronous endpoints, etc.). The Unit Descriptors describe the Device's audio
processing capabilities and how they connect to the input/output Terminals. The diagram below shows
how the audio Terminal and Unit entities are connected in the CLD example project to implement a basic
device with a stereo speaker output, and stereo input.

o T ~ o

Clock Clock
Input Terminal Eeature Unit Output Terminal
Type: USB Isochronous Supports: Volume & Mute Type: Speaker

OUT Endpoint
Channels: Left & Right

[T Ao %T%ﬁ. wao[T

Clock Clock
Input Terminal Eeature Unit Output Terminal
Type: Microphone Supports: Volume & Mute Type: USB Isochronous
Channels: Left & Right IN Endpoint

Clock Source
Sample Rate: 48kHz

More complex audio devices are created by connecting multiple Unit entities together to describe the
Device's capabilities. For more information about the available Unit and Terminal entities, and how they
are used please refer to the USB Audio Class Device v2.0 specification.

In order to successfully communicate with a USB Audio device the USB Host needs to know how the
audio data is formatted. This is done using an audio stream format descriptor, which is part of the
Streaming Audio Interface configuration. The USB Audio Device Classv2.0 specification supports
multiple audio data formats which are described in the USB Device Class Definition for Audio Data
Formats v2.0 specification.

Isochronous Endpoint Bandwidth Allocation

As mentioned previously, one of the advantages of Isochronous endpoints is that they provide guaranteed
USB bandwidth. However, thiscan also be a disadvantage when the bandwidth isn't being used as it is
wasted.

To avoid this disadvantage the USB Audio Device Class v2.0 protocol requires that audio data streaming
interfaces include two settings. The default setting does not include any Isochronous endpoints so its
bandwidth requirement is zero. An alternate interface includes the required Isochronous endpoint(s). This
allows the USB Host to enable the Isochronous endpoints when it needs to send or receive audio data, and
disable them when the audio device is idle. This switch is done using the USB Chapter 9 Set Interface
standard request.

When the CLD SC598 Audio 2.0 Library receives a Set Interface request the appropriate User callback
functionis called. Please refer to the fp_audio_streaming_rx_endpoint_enabled and
fp_audio_streaming_tx_endpoint_enabled function pointer descriptions in the
cld_sc598 audio 2 0 lib_init section of this document for more information.

USB Audio Device Class v2.0 Control Endpoint Requests

The USB Audio Device Class v2.0 control endpoint requests are broken down into Set and Get requests.
These requests are used to control the various Terminal and Unit entities defined in the Configuration
Descriptor. The CLD library support for these requests is explained in the following sections.

Additionally, the User firmware code snippetsincluded at the end of this document provide a basic
framework for implementing the USB audio Control Endpoint requests using the CLD library.

USB Audio Device Class v2.0 Set Request

The USB Audio Device Class v2.0 Set Request is used to control the audio functions supported by the
Device. This includes modifying the attributes if the Unit and Terminal entitiesas well as controlling
features of the streaming audio endpoints.

CLD SC598 Audio Device Class v2.0 Set Request Flow Chart

Set Request Setup Packet

USB Host Event

Set Request Data Stage

Yes

——

Set Request Status Stage

VI -

USB Audio Device Class v2.0 Get Request

The Get Request is a Control IN request used by the Host to request data from the audio functions
supported by the Device. This includes requesting the attributes of the Unit and Terminal entities as well
as features of the audio stream endpoints.

CLD SC598 Audio Device Class v2.0 Get Request Flow Chart

Get Request Setup Packet

USB Host Event

Get Request Data Stage

N =
Yes

Get Request Status Stage ‘

TR —

Dependencies
In order to function properly, the CLD SC598 Audio 2.0 Library requires the following resources:

ULPI (8-PIN interface) compliant USB PHY which outputs a USB clock to the processor.

The CLD library uses DMA for all USB transfers. Requiring all data transferred over USB to be
located in un-cached memory, and be 32-bitaligned. Including buffers used by the CLD library
which are located in an ".usb_lib_uncached" memory section. In order for the library to work
properly, the User must define the usb_lib_uncached section in their loader file and configure the
cache accordingly.

The User firmware is responsible for enabling the USBC I/O pins in the CCES project Pin
Multiplexing project settings.

The User firmware is responsible for configuring all other non-USB specific peripherals,
including clocks, power modes, etc.

CLD SC598 Audio 2.0 Library Scope and Intended Use

The CLD SC598 Audio 2.0 Library implements the USB Audio Device Classv2.0 required functionality
to implement a USB Audio device, as well as providing time measurements functionality. The CLD
library is designed to be added to an existing User project, and as such only includes the functionality
needed to implement the above mentioned USB, and timer keeping features. All other aspects of SC598
processor configuration must be implemented by the User code.

CLD Audio 2.0 Example v1.02 Description
The CLD example project provided with the CLD SC598 Audio 2.0 Library implements a basic USB
audio device that supports a single stereo input and stereo output loopback.

Running the Example Project

1.

With the example project was developed using the ADSP SC598 SOM and carrier board, and
toggles the LED connected to GPI1O port C pin 3 every 250 milliseconds to provide a visual
indicator the project is running.

Once the example project is running on the EZ Board connect a USB mini-b cable froma PC to
the “USB Phy” connector of the carrier board. Windows 10 will install its built-in USB Audio
2.0 driver, and the device will be listed asa USB Audio Device in the Device Manager as shown
below. If the SC598 device is not listed in Device Manager, verify the installed version of
Windows 10 supports USB Audio 2.0 devices.

w I Sound, video and game controllers
ij| Realtek High Definition Audic
i 5C592 USE Audio 2.0 Device

Under the Sound setting for Windows 10, select the SC598 USB Audio device as the output and
input device as shown below:

14

Sound

Find a setting Choose your output device

Speakers (SC598 USB Audio 2.0 Devi... Vv
System

CJ Display

Sound Volume

d)

Notifications & actions

/\ Troubleshoot
Focus assist

Power & sleep
Input

Storage
Choose your input device

Tablet mode Microphone (SC598 USB Audio 2.0...

Multitasking

4. Play an audio file, movie, or other means of outputting audio.

The example project will echo the received audio data using its microphone input, which can be seen
using Audacity or other audio recording software.

15

CLD SC598 Audio 2.0 Library API

The following CLD library API descriptions include callback functions that are called by the library
based on USB events. The following color code is used to identify if the callback function is called from
the USB interrupt service routine, or from mainline. The callback functions called from the USB
interrupt service routine are also italicized so they can be identified when printed in black and white.

Callback called from the mainline context

Callback called from the USB interrupt service routine

cld_sc598 audio_2 0 lib_init

CLD RV cld_sc598 audio_2 0_1lib init (CLD SC598 Audio 2 0 Lib Init Params *
p_lib params)

Initializes the CLD SC598 Audio 2.0 Library.

Arguments

p_lib params Pointerto a CLD_SC598 Audio_2_0_Lib_Init_Params structure

that has been initialized with the User Application specific data.

Return Value
This function returns the CLD_RV type which represents the status of the CLD library initialization
process. The CLD_RV type has the following values:

CLD_SUCCESS The library was initialized successfully
CLD_FAIL There was a problem initializing the library
CLD_ONGOING The library initialization is being processed
Details

The cld_sc598 audio_2_0 _lib_init function is called as part of the device initialization and must be
repeatedly called until the function returns CLD_SUCCESS or CLD_FAIL. If CLD_FAIL is returned the
library will output an error message identifying the cause of the failure using the fp_cld_lib_status
function if defined by the User application. Once the library has beeninitialized successfully the main
program loop can start.

The CLD_SC598 Audio 2 0 Lib_Init Paramsstructure is described below:

typedef struct

{
unsigned short vendor id;
unsigned short product id;
unsigned char usb bus max power
unsigned short device descriptor bcdDevice
unsigned char phy hs timeout calibration;
unsigned char phy fs timeout calibration;
CLD_Boolean phy delay req after ulip chirp cmd;

CLD RV (*fp init usb phy) (void);
unsigned char audio control category code;

CLD Audio_2 0 Control Interrupt Params *
p_audio control interrupt params;

unsigned char * p unit and terminal descriptors;
unsigned short unit and terminal descriptors length;

CLD Audio 2 0 Stream Interface Params *
p_audio streaming rx interface params;

CLD Audio_2 0 Rate Feedback Params * p audio rate feedback rx params;

CLD Audio 2 0 Stream Interface Params *
p_audio streaming tx interface params;

CLD_USB_Transfer Request Return Type (*fp audio set req cmd)
(CLD _Audio_2 0 Cmd Req Parameters * p req params,

CLD USB Transfer Params * p transfer data);

CLD_USB_Transfer Request_Return Type (*fp audio_get req cmd)
(CLD Audio 2 0 Cmd Req Parameters * p req params,
CLD USB Transfer Params * p transfer data);

void (*fp audio streaming rx endpoint enabled) (CLD Boolean enabled);
void (*fp audio streaming tx endpoint enabled) (CLD Boolean enabled);

const char
const char
const char
const char
const char
const char

p_usb _string manufacturer;

p_usb string product;

p_usb _string serial number;

p_usb _string configuration;

p_usb string communication class_interface;
p_usb string data class_interface;

* ok F F * *

unsigned char user string descriptor table num entries;
CLD Audio_ 2 0 Lib User String Descriptors *
p_user string descriptor table;

unsigned short usb string language id;
void (*fp cld usb event callback) (CLD USB Event event);
void (*fp cld lib status) (unsigned short status code,

void * p additional data,

unsigned short additional data size);

} CLD_SC598 Audio 2 0 Lib Init Params;

A description of the CLD_SC598_Audio_2 0_Lib_Init_Params structure elements is included below:

Structure Element Description

vendor_id The 16-bit USB vendorID thatis returned to the USB Host in the USB
Device Descriptor.

USB Vendor ID's areassigned by the USB-IF and can be purchased
through their website (www.usb.org).

product_id

The 16-bit product ID that s returned to the USB Hostin the USB Device
Descriptor.

usb_bus_max_power

USB Configuration Descriptor bMaxPower value (0 = self-powered).
Refer to the USB 2.0 protocolsection 9.6.3.

device_descriptor_bcd_device

USB Device Descriptor bcdDevice value.
Refer to the USB 2.0 protocol section 9.6.1.

phy_hs_timeout_calibration

High Speed USB timeout PHY calibration value See ADSP-SC59x
Hw Reference Manual bits 2:0 of the USBC_CFG register

phy_fs_timeout_calibration

High Speed USB timeout PHY calibration value See ADSP-SC59x
Hw Reference Manual bits 2:0 of the USBC CFG register

fp_init_usb_phy

User defined function used to initialize and reset the USB Phy

The fp_init_usb_phy functionreturns the CLD_RV type, which has

the following values:
Return Value
CLD_ONGOING

Description

Results in this function getting
additional runtime.

USB Phy initialized
successfully.

Phy initialization failed, causes
USB library initialization
failure.

CLD_SUCCESS

CLD_FAIL

audio_control_category_code

Audio Control Interface Header Descriptor bCategory code
(refer to: USB Device Class Definition of Audio Devicesv 2.0
section 4.7.2)

p_audio_control_interrupt_params

Pointer to the CLD_SC598_Audio_2 0_Control_Interrupt_Params

structure that describes the optional Interrupt IN endpoint.
Setto CLD_NULL if not required

The CLD_ Audio_2_0_Control_Interrupt_Params structure

contains the following elements:

Structure Element
endpoint_number

Description
Sets the USB endpoint number
of the Interrupt IN endpoint.

The endpoint number must be
within the following range:

1 < endpoint number < 12. Any
other endpoint number will
resultin the

cld_sc598 audio_2 0 _lib_init
function returning CLD FAIL
Full-Speed polling interval in
the USB Endpoint Descriptor.
(See USB 2.0 section 9.6.6)

b_interval_full_speed

b_interval_high_speed High-Speed polling interval in
the USB Endpoint Descriptor.
(See USB 2.0 section 9.6.6)

p_unit_and_terminal_descriptors

Pointer to the Unitand Terminal Descriptors which are part of the
Audio Control interface in the USB Configuration Descriptor.

unit_and_terminal_descriptors_len
gth

The length of the Unitand Terminal Descriptors addressed by
p_unit_and_terminal_descriptors.

p_audio_streaming_rx_interface p
arams

Pointerto a CLD_Audio_2 0 Stream_Interface Params structure
that describes how the Isochronous OUT endpoint and related USB
Audio Streaming interface should be configured. The a

CLD_Audio_2 0_Stream_Interface_Params structure contains the

following elements:

Structure Element Description

endpoint_num Sets the USB endpoint number
of the Isochronous endpoint.
The endpoint number must be
within the following range:

1 <endpoint num < 12. Any
other endpoint number will
resultin the

cld_sc598 audio_2 0_lib_init
function returning CLD_FAIL

max_packet_size full speed Sets the Isochronous
endpoint's max packet size
when operating at Full Speed.
The maximum max packet size
is 1023 bytes.

max_packet_size high speed | Setsthe Isochronous
endpoint's max packet size
when operating at High Speed.
The maximum max packet size
is 1024 bytes.

b_interval_full_speed Full-Speed polling interval in
the USB Endpoint Descriptor.
(See USB 2.0 section 9.6.6)

b_interval_high_speed High-Speed polling interval in
the USB Endpoint Descriptor.
(See USB 2.0 section 9.6.6)

b_terminal_link The Terminal ID of the
Terminal connected to this
endpoint.

b_format_type Format type of the streaming
interface

bm_formats Supported audio format
bitmap.

b_nr_channels Number of audio channels

supported by the streaming
interface.

i_channel_config Index of the string descriptor
describing the first physical
channel. These strings should
be defined in the
user_string_descriptor table.

p_encoder_descriptor Pointer to an optional USB
Audio 2.0 Encoder descriptor.

p_decoder_descriptor Pointer to an optional USB
Audio 2.0 Decoder descriptor.

p_format_descriptor Pointer to the format descriptor

defined in the USB Device
Class Definition for Audio
Data Formats v2.0
specification.

p_audio_stream_endpoint_data | Pointer to the Audio Streaming
_descriptor endpoint data descriptor (See
USB Device Class Definition
for Audio Devicesv2.0 section
4.10.1.2).

p_audio_rate_feedback rx_params

Pointerto a CLD_Audio_2 0 Rate Feedback Params structure
that describes how the Isochronous IN feedback endpoint. The a
CLD_Audio_2 0_Rate_Feedback_Params structure contains the
following elements:

Structure Element Description

max_packet_size full_speed Sets the Isochronous
endpoint's max packet size
when operating at Full Speed.
The maximum max packet size
is 1023 bytes.

max_packet_size_high_speed | Setsthe Isochronous
endpoint's max packet size
when operating at High Speed.
The maximum max packet size
is 1024 bytes.

b_interval full speed Full-Speed polling interval in
the USB Endpoint Descriptor.
(See USB 2.0 section 9.6.6)

b_interval_high_speed High-Speed polling interval in
the USB Endpoint Descriptor.
(See USB 2.0 section 9.6.6)

p_audio_streaming_tx_interface p
arams

Pointerto a CLD_Audio_2 0 Stream_Interface Params structure
that describes how the Isochronous IN endpoint and related USB
Audio Streaming interface should be configured.

Refer to the p_audio_streaming_rx_interface_params description
(above) for information about the

CLD_SC598 Audio 2 0 Stream_Interface Params structure.

fp_audio_set_req_cmd

Pointer to the function that is called whena USB Audio Device
Class v2.0 Set Request is received. This function hasa pointer to
the CLD USB Transfer Paramsstructure (‘p transfer data'), and

a pointer to the CLD_ Audio_2_0_Cmd_Req_Parameters

(p_req_params) as its parameters.

The following CLD_Audio_2 0 Cmd_Req_Parameters structure
elements are used to processed a Set Request:

Structure Element

Description

req

Identifies the type of request.
The valid typesif requests are
listed below:

CLD_REQ CURRENT
CLD_REQ RANGE

CLD REQ MEMORY

recipient_is_interface

Identifies if the request was
sent to an interface or Audio
streaming endpoint

entity_id

The ID for the audio function
being modified (Terminal 1D,
UnitID, etc)

interface_or_endpoint_num

The interface or endpoint
number for the request
depending on the recipient
specified by the
recipient_is_interface
parameter.

setup_packet_wValue

wValue field from the USB
Setup Packet.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Set Request:

Structure Element

Description

num_bytes

The number of bytes from the
Setup Packet wLength field,
which is the number of bytes
that will be transferred to
p_data_buffer before calling
the
fp_usb_out_transfer_complete
callback function.

p_data_buffer

Pointer to the data buffer to
store the Set Reqeust data.
The size of the buffer should
be greater than or equal to the
value in num_bytes.

fp_usb_out_transfer_complete

Function called when
num_bytes of data has been
written to the p_data_buffer
memory.

fp_transfer_aborted_callback

Function called if thereis a
problem receiving the data, or

if the transfer is interrupted.

transfer_timeout_ms

Not used for Control Requests
since the Host hasthe ability
to interrupt any Control
transfer.

The fp_audio_set_req_cmd function returns the
CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value

Description

CLD_USB_TRANSFER_ACCEPT

Notifies the CLD Library that
the Set Request data should be
accepted using the

p_transfer datavalues.

CLD_USB_TRANSFER_PAUSE

Requests that the CLD Library
pause the Set Request transfer.
This causes the Control
Endpoint to be nak'ed until the
transfer is resumed by calling
cld_audio_ 2 0 lib_
resume_paused_control_
transfer.

CLD_USB_TRANSFER_DISCARD

Requests that the CLD Library
discard the number of bytes
specifiedin
p_transfer_params->
num_bytes. In this casethe
library accepts the Set Request
from the USB Host but
discards the data.

CLD_USB_TRANSFER_STALL

This notifies the CLD Library
that there is an error and the
request should be stalled.

fp_audio_get req cmd

Pointer to the function that is called whena USB Audio Device
Class v2.0 Get Request is received. This function has a pointer to
the CLD_USB_Transfer_Paramsstructure (‘p_transfer_data'), anda
pointerto the CLD_Audio_2 0 Cmd_Req_Parameters

(p_req_params) as its parameters.

The following CLD_Audio_2 0 _Cmd_Req_Parameters structure
elements are used to processed a Get Request:

Structure Element

Description

req

Identifies the type of request.
The valid typesif requests are
listed below:

CLD REQ CURRENT

CLD REQ RANGE

CLD REQ MEMORY

recipient_is_interface

Identifiesif the request was
sent to an interface or Audio

streaming endpoint

entity_id

The ID for the audio function
being accessed (Terminal 1D,
Unit ID, etc)

interface_or_endpoint_num

The interface or endpoint
number for the request
depending on the recipient
specified by the
recipient_is_interface
parameter.

setup_packet_wValue

wValue field from the USB
Setup Packet.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Set Request:

Structure Element

Description

num_bytes

The number of bytes fromthe
Setup Packet wLength field,
which is the number of bytes
that the device can send from
p_data_buffer before calling
the fp_usb_out_transfer_
complete callback function.

p_data_buffer

Pointer to the data buffer used
to source the Get Request
data. The size of the buffer
should be greater than or
equal to the value in

num bytes.

fp_usb_in_transfer_complete

Function called when
num_bytes of data has been
transmitted to the USB Host.

fp_transfer_aborted_callback

Function called if thereis a
problem transmitting the data,
or if the transfer is interrupted.

transfer_timeout_ms

Not used for Control Requests
since the Host hasthe ability
to interrupt any Control
transfer.

The fp_audio_get req cmd function returns the
CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value

Description

CLD_USB_TRANSFER_ACCEPT

Notifies the CLD library that
the Get Request data should be
transmitted using the
p_transfer datavalues.

CLD_USB_TRANSFER_PAUSE

Requests that the CLD library

pause the Get Request transfer.
This causes the Control
Endpointto be nak'ed until the
transfer is resumed by calling
cld_audio 2 0 lib_
resume_paused_control_
transfer.

CLD_USB_TRANSFER_DISCARD | Requests thatthe CLD library

to return a zero length packet
in response to the Get Request.

CLD_USB_TRANSFER_STALL This notifies the CLD library

that there is an error and the

request should be stalled.

fp_audio_streaming_rx_endpoint_
enabled

Function called when the Isochronous OUT streaming interface is
enabled/disabled by the USB Host using the Set Interface
command.

fp_audio_streaming_tx_endpoint_
enabled

Function called when the Isochronous IN streaming interface is
enabled/disabled by the USB Host using the Set Interface
command.

p_usb_string_manufacturer

Pointer to the null-terminated string. This string is used by the
library to generate the Manufacturer USB String Descriptor. If the
Manufacturer String Descriptor is not used set

p_usb string manufacturerto CLD NULL.

p_usb_string_product

Pointer to the null-terminated string. This string is used by the CLD
library to generate the Product USB String Descriptor. If the
Product String Descriptor is not used set p_usb_string_product to
CLD NULL.

p_usb_string_serial_number

Pointer to the null-terminated string. This string is used by the CLD
library to generate the Serial Number USB String Descriptor. If the
Serial Number String Descriptor is not used set

p_usb string serial numberto CLD NULL.

p_usb_string_configuration

Pointer to the null-terminated string. This string is used by the CLD
library to generate the Configuration USB String Descriptor. If the
Configuration String Descriptor is not used set

p_usb string configurationto CLD NULL.

p_usb_string_audio_control_interface

Pointer to the null-terminated string. This string is used by the CLD
library to generate the Audio Control Interface USB String
Descriptor. If this interface String Descriptor is not used set it to
CLD_NULL.

p_usb_string_audio_streaming_
out_interface

Pointer to the null-terminated string. This string is used by the CLD
library to generate the Audio OUT Streaming Interface USB String
Descriptor. If this interface String Descriptor is not used set it to
CLD NULL.

p_usb_string_audio_streaming_in
_interface

Pointer to the null-terminated string. This string is used by the CLD
library to generate the Audio IN Streaming Interface USB String
Descriptor. If this interface String Descriptor is not used set it to
CLD _NULL.

user_string_descriptor_table_num
_entries

The number of entries in the array of
CLD_Audio_2_0_Lib_User_String_Descriptors structures
addressed by p_user string descriptor table. Setto O if

p_user string descriptor table issetto CLD NULL.

p_user_string_descriptor_table

Pointer to an array of CLD_Audio_2 0 Lib_User_
String_Descriptors structures used to define any custom User
defined USB string descriptors. This table is used to define any
USB String descriptors for any string descriptor indexes that are
used in the Terminal or Unit Descriptors.

Setto CLD_NULL is not used.

The CLD_Audio_2 0 Lib_User_String_Descriptors structure
elements are explained below:

Structure Element
string_index

Description

The USB String Descriptor
index for the string. The
string_index value is set to the
index specified in the
Terminal or Unit Descriptor
associated with this string.
Pointer to a null terminated
string.

p_string

usb_string_language_id

16-bit USB String Descriptor Language 1D Code as defined in the
USB Language ldentifiers (LANGIDs) document
(www.usb.org/developers/docs/USB_LANGIDs.pdf).

0x0409 = English (United States)

fp_cld_usb_event_callback

Function thatis called when one of the following USB eventsoccurs. This
functionhasasingle CLD_USB_Event parameter.

Note: This callback can be called from the USB interrupt or mainline
context depending on which USB event was detected. The
CLD_USB_Event values in the table below are highlighted to show the
contextthe callback is called for each event.

The CLD _USB_Event has the following values:

Return Value

Description

CLD_USB_CABLE_CONNECTED

USB Cable Connected.

CLD_USB_CABLE_DISCONNECTED

USB Cable
Disconnected

CLD_USB_ENUMERATED_CONFIGURED_
FS

USB device enumerated
(USB Configuration set
to anon-zero value) at
Full-Speed

CLD_USB_ENUMERATED_CONFIGURED_
HS

USB device enumerated
(USB Configuration set
to a non-zero value) at
High-Speed

CLD_USB_UN_CONFIGURED

USB Configuration set
to 0

CLD_USB_BUS_RESET

USB Bus reset received

Note: Set to CLD NULL if not required by application

fp_cld_lib_status Pointer to the function that is called when the CLD library hasa statusto
report. This function hasthe following parameters:

Parameter Description

status_code 16-bit statuscode. Ifthe most
significant bit is a '1' the status
being reported is an Error.

p_additional_data Pointer to additionaldata
included with the status.
additional_data_size The numberof bytesin the

specified additionaldata.

If the User plans on processing outside of the fp_cld_lib_status
function they will need to copy the additional data to a User buffer.

cld_sc598 audio_2 0 lib_main
void cld sc598 audio 2 0_1lib main (void)
CLD SC598 Audio 2.0 Library mainline function

Arguments
None

Return Value
None.

Details
The cld_sc598 audio_2_0_lib_main function is the CLD library mainline function that must be called in
every iteration of the main program loop in order for the library to function properly.

26

cld_audio_2 0 lib_receive_stream_data

CLD USB Data Receive Return Type cld audio 2 0 _lib receive_ stream data
(CLD _USB Transfer Params * p transfer data)

CLD Audio 2.0 Library function used to receive data overthe Isochronous OUT endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_ Transfer_Params structure
used to describe the data being received.

Return Value

This function returns the CLD USB Data Receive Return Type typewhichreportsif the
Isochronous OUT transmission has been configured. CLD_USB_Data_Receive_Return_Type hasthe
following values:

CLD_USB_TRANSMIT_SUCCESSFUL The library has configured the requested
Isochronous IN transfer.
CLD_USB_TRANSMIT FAILED The library failed to configure the requested

Isochronous OUT transfer. This will happen if
the Isochronous OUT endpoint is busy, or if the
p_transfer_data->data_buffer is set to

CLD_NULL
CLD_USB_RECEIVE_FAILED_MISALIGNED The requested USB transfer failed because the

specified memory location isn't 32-bit aligned.
CLD_USB_RECEIVE_FAILED NUM_BYTES The transfer failed because the num_bytes field

of the passed CLD_USB_Transfer_Params
structure was not a multiple of the endpoint max
packetsize. Note: the max packet size is
determined based on the values specified by the
User, and the enumerated USB speed.

Details

The cld_audio 2 0 _lib_receive stream_data enables the Isochronous OUT endpoint to receive the data
specified by the p_transfer_data parameter from the USB Host. This function should be called when the
streaming RX endpointis enabled, in fp_usb_out _transfer_complete, and in fp_transfer_aborted callback.

The CLD_USB_Transfer_Params structure is described below.

typedef struct

{
unsigned long num bytes;
unsigned char * p data buffer;
union

{

CLD USB Data Received Return Type (*fp usb out transfer complete) (unsigned

int num bytes);
void (*fp usb in transfer complete) (void);
}callback;
void (*fp transfer aborted callback) (void);

CLD Time transfer timeout ms;
} CLD_USB Transfer Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transfer to the USB Host. Once the
specified number of bytes has been transmitted the
fp_usb in transfer complete callback function will be called.

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must
include the number of bytes specified by num bytes.
fp_usb_out_transfer_complete Function called when the specified data has been received, or the

Host send a short packet (less than the max packet size) signaling
the end of a transfer. This function is passed the number of
received bytes.

fp_usb in transfer complete Not used for OUT transfers.

fp_transfer_aborted_callback Function called if there is a problem receiving the data to the USB
Host. This function canbe setto CLD_NULL if the User
application doesn't want to be notified if a problem occurs.

transfer_timeout_ms Isochronous OUT transfer timeout in milliseconds. If the
Isochronous OUT transfer takes longer then this timeout the
transfer is aborted and the fp_transfer_aborted_callback is called.
Setting the timeout to 0 disables the timeout

cld_audio_2 0 lib_transmit_audio_data

CLD USB Data Transmit Return Type cld audio_2 0 lib transmit_audio_data
(CLD _USB Transfer Params * p transfer data)

CLD Audio 2.0 Library function used to send data over the Isochronous IN endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_ Transfer_Params structure
used to describe the data being transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Isochronous
IN transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following
values:

CLD_USB_TRANSMIT SUCCESSFUL The library has started the requested Isochronous
IN transfer.
CLD_USB_TRANSMIT FAILED The library failed to start the requested Isochronous

IN transfer. This will happen if the Isochronous IN
endpoint is busy, or if the p_transfer_data->
data bufferissetto CLD NULL

CLD_USB_TRANSMIT FAILED MISALIGNED The requested USB transfer failed because the
specified memory locationisn't 32-bit aligned.

Details
The cld_audio_2 0_lib_transmit_audio_data function transmits the data specified by the p_transfer_data
parameter to the USB Host using the Device's Isochronous IN endpoint.

The CLD_USB_Transfer_Params structure is described below.

typedef struct
{
unsigned long num bytes;
unsigned char * p data buffer;
union
{
CLD USB Data Received Return Type (*fp usb out transfer complete) (void);
void (*fp usb in transfer complete) (void);
}Jcallback;
void (*fp transfer aborted callback) (void);
CLD Time transfer timeout ms;
} CLD_USB Transfer Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transferto the USB Host. Once the
specified number of bytes has been transmitted the
fp_usb in_transfer complete callback function will be called.

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must
include the number of bytes specified by num bytes.

29

fp_usb out transfer complete

Not Used for Isochronous IN transfers

fp_usb_in_transfer_complete

Function called when the specified data has been transmitted to the
USB Host. This function pointer can besetto CLD_NULL if the
User application doesn't want to be notified when the data has been
transferred.

fp_transfer_aborted_callback

Function called if there is a problem transmitting the data to the
USB Host. This function can besetto CLD_NULL if the User
application doesn't want to be notified if a problem occurs.

transfer_timeout_ms

Isochronous IN transfer timeout in milliseconds. If the Isochronous
IN transfer takes longer then this timeout the transfer is aborted and
the fp_transfer_aborted callback is called.

Setting the timeout to 0 disables the timeout

cld _audio_2 0 w_transmit_interrupt_data

CLD USB Data Transmit Return Type cld audio 2 0_1lib transmit interrupt data
(CLD _USB Transfer Params * p transfer data)

CLD Audio 2.0 Library function used to send data over the optional Interrupt IN endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_ Transfer_Params structure
used to describe the data being transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Interrupt IN
transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following
values:

CLD_USB_TRANSMIT_ SUCCESSFUL The library has started the requested Interrupt IN
transfer.
CLD_USB_TRANSMIT_FATILED The library failed to start the requested Interrupt IN

transfer. This will happen if the Interrupt IN
endpoint is disabled, is busy, if the number of bytes
isn't 6, or if the p_transfer_data-> data_buffer is set
to CLD NULL

CLD_USB_TRANSMIT_FAILED_MISALIGNED The requested USB transfer failed because the
specified memory location isn't 32-bit aligned.

Details
The cld_audio_2 0_lib_transmit_interrupt_data function transmits the data specified by the
p_transfer_data parameter to the USB Host using the Device's Interrupt IN endpoint.

According to the USB Device Class Definition for Audio Devices v2.0 the Interrupt IN message is a fixed
size (6 bytes), so if the User tries to transfer more, or less, then 6 bytes the
cld_audio_2_0_lib_transmit_interrupt_data function will return CLD_USB_TRANSMIT_FAILED.

The CLD_USB_Transfer_Params structure is described below.

typedef struct
{
unsigned long num bytes;
unsigned char * p data buffer;
union
{
CLD USB Data Received Return Type (*fp usb out transfer complete) (void);
void (*fp usb in transfer complete) (wvoid);
}callback;
void (*fp transfer aborted callback) (void);
CLD Time transfer timeout ms;
} CLD_USB Transfer Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

31

Structure Element

Description

num_bytes

The number of bytes to transferto the USB Host. Once the
specified number of bytes has been transmitted the
fp_usb in transfer complete callback function will be called.

p_data_buffer

Pointer to the data to be sent to the USB Host. This buffer must
include the number of bytes specified by num bytes.

fp_usb_out transfer _complete

Not Used for Interrupt IN transfers

fp_usb_in_transfer_complete

Function called when the specified data has been transmitted to the
USB Host. This function pointer can besetto CLD_NULL if the
User application doesn't want to be notified when the data has been
transferred.

fp_transfer_aborted_callback

Function called if there is a problem transmitting the data to the
USB Host. This function can besetto CLD_NULL if the User
application doesn't want to be notified if a problem occurs.

transfer_timeout_ms

Interrupt IN transfer timeout in milliseconds. If the Interrupt IN
transfer takes longer then this timeout the transfer is aborted and the
fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

cld_audio_2 0 lib_transmit_audio_rate feedback data

CLD USB Data Transmit Return Type
cld audio_2 0_1lib transmit audio_rate_ feedback data
(CLD_USB Audio Feedback Params * p transfer data)

CLD Audio 2.0 Library function used to transfer audio OUT rate feedback data over the optional rate
feedback Isochronous IN endpoint.

Arguments

CLD_USB_Audio_Feedback_Params Pointerto a CLD_USB_Audio_Feedback Params
structure used to describe the data being
transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Interrupt IN
transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following
values:

CLD_USB_TRANSMIT_ SUCCESSFUL The library has scheduled the requested
Isochronous IN transfer.
CLD_USB_TRANSMIT FAILED The library failed to schedule the requested

Isochronous IN transfer. This will happen if the
Isochronous IN endpoint is disabled, orbusy.

Details
The cld_audio_2_0_lib_transmit_audio_rate_feedback_data function transmits the data specified by the
p_transfer_data parameter to the USB Host using the Device's Isochronous IN endpoint.

The CLD_USB_Audio_Feedback Params structure is described below.

typedef struct

{
float desired data rate;
void (*fp usb in transfer complete) (wvoid);
void (*fp transfer aborted callback) (void);
CLD Time transfer timeout ms;

} CLD USB Audio Feedback Params;

A description of the CLD_USB_Audio_Feedback Params structure elements is included below:

Structure Element Description
desired data rate Feeback value in kHz (for example use 44.1 for 44.1kHz)
fp_usb_in_transfer_complete Function called when the specified data has been transmitted to the

USB Host. This function pointer can be setto CLD_NULL if the
User application doesn't want to be notified when the data has been
transferred.

fp_transfer_aborted_callback Function called if there is a problem transmitting the data to the
USB Host. This function can besetto CLD _NULL if the User
application doesn't want to be notified if a problem occurs.

transfer timeout ms Interrupt IN transfer timeout in milliseconds. If the Interrupt IN

transfer takes longer then this timeout the transfer is aborted and the
fp_transfer_aborted_callback is called.
Setting the timeout to 0 disables the timeout

34

cld _audio_2 0 lib_resume_paused control_transfer

void cld audio 2 0_1lib resume_ paused control transfer (void)

CLD library function used to resume a paused Control endpoint transfer.

Arguments
None

Return Value
None.

Details

The cld_audio_2 0_lib_resume_paused_control_transfer function is used to resume a Control transfer
which was paused by the fp audio set req cmd, or fp audio get req cmd
functionreturning CLD_USB_TRANSFER_PAUSE. When called the

cld_audio_2 0 lib_resume_paused_control_transfer function will call the User application's

fp _audio set reg cmd, or fp audio get req cmd functionpassingthe
CLD_USB_Transfer_Params of the original paused transfer. The User function can then chose to accept,
discard, or stall the Control endpoint request.

35

cld_lib_usb_connect

void cld 1lib usb connect (void)

CLD Library function used to connect to the USB Host.

Return Value
None.

Details
The cld_lib_usb_connect function is called after the CLD library has been initialized to connect the USB
device to the Host.

cld_lib_usb_disconnect

void cld_1lib usb_disconnect (void)

CLD library function used to disconnect from the USB Host.

Return Value
None.

Details
The cld_lib_usb_disconnect function is called after the CLD library has been initialized to disconnect the
USB device to the Host.

cld_time_125us_tick

void cld_time_125us_tick (void)

CLD library timer function that should be called once per 125 microseconds.

Arguments
None

Return Value
None.

Details
This function should be called once every 125 microseconds in order to the CLD to processed periodic
events.

36

cld_usbO isr_callback

void cld usb0_isr callback (void)

CLD library USB interrupt service routines

Arguments
None

Return Value
None.

Details
These USB ISR functions should be called from the corresponding USB Port Interrupt Service Routines
as shown in the CLD provided example projects.

cld_time_get

CLD Time cld_time_get (void)

CLD library function used to get the current CLD time in milliseconds.

Arguments
None

Return Value
The current CLD library time.

Details

The cld_time_get function is used in conjunction with the cld_time_passed_ms function to measure how
much time has passed between the cld_time_get and the cld_time_passed_ms function calls in
milliseconds.

37

cld_time_passed_ms
CLD Time cld_time passed ms (CLD Time time)
CLD library function used to measure the amount of time that has passed in milliseconds.

Arguments

time A CLD_Time valuereturned by acld_time_get
function call.

Return Value
The number of milliseconds that have passed since the cld_time_get function call that returned the
CLD_Time value passed to the cld_time_passed_ms function.

Details

The cld_time_passed_ms function is used in conjunction with the cld_time_get function to measure how
much time has passed between the cld_time_get and the cld_time_passed_ms function calls in
milliseconds.

cld_time_get_125us

CLD Time cld_time get 125us (void)

CLD library function used to get the current CLD time in 125 microsecond increments.

Arguments
None

Return Value
The current CLD library time.

Details

The cld_time_get_125us functionis used in conjunction with the cld_time_passed_125us function to
measure how much time has passed between the cld_time_get_125us and the cld_time_passed_125us
function callsin 125 microsecond increments.

38

cld_time_passed_125us

CLD Time cld_time passed_125us (CLD Time time)

CLD library function used to measure the amount of time that has passed in 125 microsecond increments.

Arguments

time A CLD_Time valuereturned by a
cld time get 125us function call.

Return Value
The number of 125microsecond increments that have passed since the cld_time_get 125us function call
that returned the CLD_Time value passed to the cld_time_passed_125us function.

Details

The cld_time_passed_125us function is used in conjunction with the cld_time_get_125us function to
measure how much time has passed between the cld_time_get 125us and the cld_time_passed 125us
function callsin 125 microsecond increments.

cld_lib_status_decode
char * cld lib status_decode (unsigned short status cod,

void * p additional data,
unsigned short additional data size)

CLD Library function that returns a NULL terminated string describing the status passed to the function.

Arguments

status_code 16-bit status code returned by the CLD library.
Note: If the most significant bitis a1’ the statusis
an error.

p_additional data Pointer to the additional data returned by the CLD
library (if any).

additional data_size Size of the additional datareturned by the CLD
library.

Return Value
This function returns a decoded Null terminated ASCII string.

Details

The cld_lib_status_decode function can be used to generate an ASCII string which describesthe CLD
library status passed to the function. The resulting string can be used by the User to determine the
meaning of the status codes returned by the CLD library.

39

cld_lib_access _usb_phy reg
CLD RV cld lib access_usb phy reg (CLD USB PHY Access Params * p params)
CLD Library function used to read or write the USB phy registers.

Arguments

p_params Pointer to the CLD_USB_PHY_Access_Params
structure describing the phy access.

Return Value

CLD_SUCCESS — USB phy accesscomplete.

CLD_ONGOING - USB phy access in progress, continue calling cld_lib_access _usb_phy_reg until it
returns CLD_SUCCESS or CLD_FAIL.

CLD_FAIL — Error occurred while accessing the phy.

Details
The cld_lib_access_usb_phy reg function performsthe USB phy access described by the p_params
parameter.

The CLD_USB_PHY_Access_Params structure is described below.

typedef struct

{
CLD Boolean write;
unsigned char reg addr;
unsigned char v _ctrl;
unsigned char reg data;

} CLD_USB_PHY Access Params;

A description of the CLD_USB_PHY _Access_Params structure elements is included below:

Structure Element Description

write TRUE = register write, FALSE = register read

reg_addr Address of the USB phy register being accessed

v_ctrl ULPI Vendor Control Register Address

reg data Data being written to, or read from, the USB phy register.

40

Adding the CLD SC598 Audio 2.0 Library to an Existing CrossCore
Embedded Studio Project
In order to include the CLD SC598 Audio 2.0 Library in a CrossCore Embedded Studio (CCES) project

you must configure the project linker settings so it can locate the library. The following steps outline how
this is done.

1. Copy thecld_sc598 audio_2_ 0 lib.hand cld_sc598 audio_2 0 lib_Core0.afiles to the project's
src directory.

2. Open the project in CrossCore Embedded Studio.

3. Rightclick the project in the 'C/C++ Projects' window and select Properties.

If you cannot find the 'C/C++ Projects™ window, make sure C/C++ Perspective is active. If the
C/C++ Perspective is active and you still cannot locate the 'C/C++ Projects window select
Window — Show View — C/C++ Projects.

4. Youshould now see a project properties window similar to the one shown below.

Navigate to the C/C++ Build — Settings page and select the CrossCore ARM Bare Metal C
Linker's Libraries page. The CLD SC598 Audio 2.0 Library needs to be included in the projects
‘Additional objects'as shown in the diagram below (circled in blue). This lets the linker know
where the cld_sc598 audio_2 0 _lib_Core0.afileis located.

L Pro perties for CLD_Audio_2

type filter text

» Resource
Builders
w C/C++ Build
Build Variables
Environment
Legging
Settings
Warnings
» C/C++ General
Project Natures
Project References
Run/Debug Settings

Settings

Configuratio(I All configurations]

& Toal Settings {8l Processor Settings & Build Steps

~ B3 CrossCore Afrch6d Bare Metal Assembler
General
(&2 Preprocessor
& Additional Options
~ [y CrossCore Afrch84 Bare Metal C Compiler
2 General
(& Preprocessor
2 Wamings
@ Additional Options
~ [y CrossCore Afrch64 Bare Metal C Linker
General
@ Preprocessor
(2 Libraries
(& Additional Options

Library search directories (-L):

e)anage Configurations...

Build Artifact Binary Parsers @ Error Parsers

€48 3§l

Additional objects:

£ & 8 5l L

"§{ProjDirPath}/src/cld_sc598_audio_2_0_lib_Corel.a"

Additional libraries (-1): IEEAR=RAR
Link against system math library (-Im)
[W] Use debug system libraries (-mdebug-libs)
Hover over an option to display its tooltip
Restore Defaults Apply

@

Apply and Close

Cancel

5. The 'Additional objects' setting needs to be set for all configurations (Debug, Release, etc). This
can be done individually foreach configuration, or all at once by selecting the [All
Configurations] option as shown in the previous figure (circled in orange).

a2 L

User Firmware Code Snippets

The following code snippets are not complete, and are meant to be a starting point for the User firmware.
For a functional User firmware example that uses the CLD SC598 Audio 2.0 Library please referto the
CLD example projects included available with the CLD SC598 Audio 2.0 Library.

main.c

void main (void)
{
Main States main state = MAIN STATE SYSTEM INIT;

while (1)
{
switch (main state)
{
case MAIN STATE SYSTEM INIT:
/* Initialize the clock, and power systems.*/

main state = MAIN STATE USER INIT;
break;
case MAIN STATE USER INIT:
rv = user_init();
if (rv == USER_INIT SUCCESS)
{
main state = MAIN STATE RUN;
}
else if (rv == USER INIT FAILED)
{
main_state = MAIN_STATE_ERROR;
}

break;

case MAIN STATE RUN:
user_main ();

break;

case MAIN STATE ERROR:

break;

43

user.c

#pragma pack (1)

J*
USB Audio vZ2.0 Unit and Terminal descriptors that describe a simple
audio device comprised of the following:

Input Terminal - USB Streaming Endpoint

ID = 0x01

Channels: Left, Right
Input Terminal - Microphone

ID = 0x02

Channels: Left, Right
Output Terminal - Speaker
ID = 0x06
Source ID = 0x09
Output Terminal - USB Streaming Endpoint
ID = 0x07
Source ID = 0x0a
Feature Unit
ID = 0x09
Source ID = 0x01
Controls:
Master Channel 0: Mute (Control 1)
Channel 1 (Left): Volume (Control 2)
Channel 2 (Right): Volume (Control 2)
Feature Unit
ID = 0x0a
Source ID = 0x02
Controls:
Master Channel 0: Volume (Control 2)
*/
/* USB Audio v2.0 Unit and Terminal descriptors that describe a simple audio device.*/
static const unsigned char user audio unit_and terminal descriptor[] =
{
/* Input Terminal Descriptor - USB Endpoint */

0x11, /* bLength */

0x24, /* bDescriptorType = Class Specific Interface */
0x02, /* bDescriptorSubType = Input Terminal */
0x01, /* bTerminalID */

0x01, 0xO01, /* wlerminalType = USB Streaming */

0x00, /* bAssocTerminal */

0x03, /* bCSourceID */

0x02, /* bNRChannels */

0x03, 0x00, 0x00,0x00, /* wChannelConfig (Left & Right Present) */
0x00, /* iChannelNames */

0x00,0x00, /* bmControls */

0x00, /* iTerminal */

/* Input Terminal Descriptor - Microphone */

0x11, /* bLength */

0x24, /* bDescriptorType = Class Specific Interface */
0x02, /* bDescriptorSubType = Input Terminal */
0x02, /* bTerminalID */

0x01, 0x02, /* wTerminalType = Microphone */

0x00, /* bAssocTerminal */

0x03, /* bCSourceID */

0x02, /* bNRChannels */

0x03, 0x00, 0x00,0x00, /* wChannelConfig (Left & Right Present) */
0x00, /* iChannelNames */

0x00,0x00, /* bmControls */

0x00, /* iTerminal */

/* Output Terminal Descriptor - Speaker */

0x0c, /* bLength */

[44

0x24, /* bDescriptorType = Class Specific Interface */

0x03, /* bDescriptorSubType = Output Terminal */
0x06, /* bTerminalID */

0x01, 0x03, /* wTerminalType - Speaker */

0x00, /* bAssocTerminal */

0x09, /* bSourceID */

0x03, /* bCSourceID */

0x00, 0xO00, /* bmControls */

0x00, /* iTerminal */

/* Output Terminal Descriptor - USB Endpoint */

0x0c, /* bLength */

0x24, /* bDescriptorType = Class Specific Interface */
0x03, /* bDescriptorSubType = Output Terminal */
0x07, /* bTerminalID */

0x01, 0x01, /* wlTerminalType - USB Streaming */

0x00, /* bAssocTerminal */

0x0a, /* bSourceID */

0x03, /* bCSourceID */

0x00, 0x00, /* bmControls */

0x00, /* iTerminal */

/* Feature Unit Descriptor */

0x12, /* bLength */

0x24, /* bDescriptorType = Class Specific Interface */
0x06, /* bDescriptorSubType = Feature Unit */
0x09, /* bUnitID */

0x01, /* bSourceID */

0x0f, 0x00, 0x00, 0x00, /* bmaControls - Master */
0x0f, 0x00, 0x00, 0x00, /* bmaControls - Left */
0x0f, 0x00, 0x00, 0x00, /* bmaControls - Right */

0x00, /* iFeature */

/* Feature Unit Descriptor */

0x12, /* bLength */

0x24, /* bDescriptorType = Class Specific Interface */
0x06, /* bDescriptorSubType = Feature Unit */

0x0A, /* bUnitID */

0x02, /* bSourceID */

0x0f, 0x00, 0x00, O0x00, /* bmaControls - Master */
0x0f, 0x00, 0x00, 0x00, /* bmaControls - Left */
0x0f, 0x00, 0x00, 0x00, /* bmaControls - Right */

0x00, /* iFeature */

/* Clock Source Descriptor */

0x08, /* bLength */

0x24, /* bDescriptorType = Class Specific Interface */
0x0a, /* bDescriptorSubType = Clock Source */

0x03, /* ClockID */

0x01, /* bmAttributes - Internal Fixed Clock */

0x00, /* bmControls */

0x00, /* bAssocTerminal */

0x00, /* iClockSource */

}i

/* Isochronous IN endpoint PCM format descriptor */
static const unsigned char user audio in stream format descriptor([] =

{

0x06, /* bLength */

0x24, /* bDescriptorType - Class Specific Interface */
0x02, /* bDescriptorSubType - Format Type */

0x01, /* bFormatType - Format Type 1 */

0x04, /* bSubSlotSize */

0x20, /* bBitResolution */

}i

T

/* Isochronous OUT endpoint PCM format descriptor */
static const unsigned char user audio out stream format descriptor[] =

{

0x06, /* bLength */

0x24, /* bDescriptorType - Class Specific Interface */
0x02, /* bDescriptorSubType - Format Type */

0x01, /* bFormatType - Format Type 1 */

0x04, /* bSubSlotSize */

0x20, /* bBitResolution */

}:

#pragma pack ()

/* IN Audio Stream Interface Endpoint Data Descriptor */

static const CLD Audio 2 0 Lib Audio Stream Data Endpoint Descriptor

user audio in stream endpoint desc = B B B

{
.b_length = sizeof (CLD_Audio 2 0 Lib Audio Stream Data Endpoint Descriptor),
.b descriptor type = 0x25, /* Class Specific Endpoint */
.b:descriptor:subtype 0x01, /* Endpoint - General */
.bm_attributes 0x00, /* max packet only set to 0 */

.bm controls = 0x00,
.b lock delay units = 0x00,
.w_lock delay = 0x00,

}i

/* OUT Audio Stream Interface Endpoint Data Descriptor */

static const CLD Audio 2 0 Lib Audio Stream Data Endpoint Descriptor

user audio out stream endpoint desc =

{
.b_length = sizeof (CLD Audio 2 0 Lib Audio Stream Data Endpoint Descriptor),
.b_descriptor_ type = 0x25, /* Class Specific Endpoint */
.b_descriptor subtype 0x01, /* Endpoint - General */
.bm_attributes 0x00, /* max packet only set to 0 */

.bm_controls = 0x00,
.b_lock delay units = 0x02, /* Milliseconds */
.w_lock delay = 0x01, /* 1 Millisecond */

}i

/* Audio Stream IN Interface parameters */
static CLD Audio 2 0 Stream Interface Params user audio in endpoint params =
{
.endpoint number = 2, /* Isochronous endpoint number */
/* Isochronous endpoint full-speed max packet size */
.max_packet size full speed = USER AUDIO MAX PACKET SIZE,
/* Isochronous endpoint high-speed max packet size */
.max packet size high speed = USER AUDIO MAX PACKET SIZE,

.b_interval full speed =1, /* Isochronous endpoint full-speed bInterval */
/* Isochronous endpoint high-speed bInterval - 1 millisecond */

.b_interval high speed = 4,

/* Terminal ID of the associated Output Terminal */
.b_terminal link =7,
.b_format type =1, /* Type 1 Format */
.bm_formats = 0x00000001, /* Type 1 - PCM format */
.b_nr channels = 2, /* 2 Channels */
.bm channel config = 0x00000003, /* Front Left & Front Right Channels */
.p_encoder descriptor = CLD NULL,
.p_decoder descriptor = CLD NULL,

.p_format descriptor = (unsigned
char*)user audio in stream format descriptor,
.p_audio_ stream endpoint data descriptor =
(CLD_Audio 2 0 Lib Audio Stream Data Endpoint Descriptor*)&user audio in stream endpoi

46

nt desc,

}:

/* Audio Stream OUT Interface parameters */
static CLD Audio 2 0 Stream Interface Params user audio out endpoint params =
{
.endpoint number =2, /* Isochronous endpoint number */
/* Isochronous endpoint full-speed max packet size */
.max packet size full speed = USER AUDIO MAX PACKET SIZE,
/* Isochronous endpoint high-speed max packet size */
.max packet size high speed = USER AUDIO MAX PACKET SIZE,
B B N "~ /* Isochronous endpoint full-speed bInterval */

.b interval full speed =1,

B B /* Isochronous endpoint high-speed bInterval - 1 millisecond */
.b_interval high speed = 4,

/* Terminal ID of the associated Output Terminal */

.b_terminal link =1,
.b_format type =1, /* Type 1 Format */
.bm_ formats = 0x00000001, /* Type 1 - PCM format */
.b nr channels = 2, /* 2 Channels */
.bﬁ_cﬁannel_config = 0x00000003, /* Front Left & Front Right Channels */
.p_encoder descriptor = CLD NULL,
.p_decoder descriptor = CLD NULL,

.p_format descriptor (unsigned char¥)
user audio out stream format descriptor,
.p_audio stream endpoint data descriptor = - -
(CLD_Audio 2 0 Lib Audio Stream Data Endpoint Descriptor ¥*)
&user audio out stream endpoint desc,

}:

/* Audio Control Interrupt IN endpoint parameters */
static CLD Audio 2 0 Control Interrupt Params user audio interrupt in params =

{

.endpoint number = 1, /* Endpoint number */
.b_interval full speed = 1, /* Interrupt IN endpoint full-speed bInterval */
.b_interval high speed 4, /* Interrupt IN endpoint high-speed bInterval */

}:

/*!< CLD Library initialization data. */
static CLD SC598 Audio 2 0 Lib Init Params user audio 2 0 init params =
{
.vendor id = 0x064b, /* Analog Devices Vendor ID */
.product_id = 0x0008, /* Product ID. */
.usb bus max power = 0,

0x0100,
0x01, /* Desktop Speaker */

.device descriptor bcdDevice
.audio control category code

.phy hs_ timeout calibration 0, /* TODO: set based on USB Phy. */
.phy fs timeout calibration = 0, /* TODO: set based on USB Phy. */
.phy delay req after ulip chirp cmd = CLD TRUE, /* TODO: set based on USB Phy. */

.fp_init usb_phy = user_init usb_phy,

/* Optional Interrupt endpoint parameters */
.p_audio control interrupt params = &user audio interrupt in params,

/* Unit and Terminal descriptor */
.p unit and terminal descriptors = (unsigned char¥)
- "~ user audio unit and terminal descriptor,
.unit and terminal descriptors length =
N _Eizeof(uéér_audio_uni%_and_terminal_descriptor),

/* Pointer to the Interface parameters for the Audio Stream Rx interface. */
.p_audio streaming rx interface params = &user audio out endpoint params,

/* Pointer to the feedback parameters for the Audio Stream Rx interface. */
.p_audio rate feedback rx params = &user audio rate feedback params,

/* Pointer to the Interface parameters for the Audio Stream Tx interface. */
.p_audio streaming tx interface params = &user audio in endpoint params,

/* Function called when an USB Audio 2.0 Set Request is received.*/
.fp audio set req cmd = user audio set req cmd,

/* Function called when an USB Audio 2.0 Get Request is received. */
.fp _audio get reqg cmd = user audio get req cmd,

/* Function called when the Isochronous OUT interface is enabled/disabled */
.fp audio streaming rx endpoint enabled =
- ‘user audio streaming rx endpoint enabled,
/* Function called when the Isochronous IN interface is enabled/disabled */
.fp audio streaming tx endpoint enabled =
user audio streaming tx endpoint enabled,

/* USB string descriptors - Set to CLD NULL if not required */
.p_usb string manufacturer = "Analog Devices Inc",

.p_usb string product "SC598 Audio v2.0 Device",

.p_usb string serial number = CLD NULL,

.p usb string configuration = CLD NULL,

.p_usb _string audio control interface CLD NULL,

.p usb string audio streaming out interface “USB Audio Output”,
.p_usb string audio streaming in interface = “USB Audio Input”,

.user string descriptor table num entries = 0,
.p_user string descriptor table = CLD NULL,

.usb_string language id = 0x0409, /* English (US) language ID */

/* Function called when a USB events occurs on USB0O. */
.fp _cld usb event callback = user usb event,

/* Function called when the CLD library reports a status. */
.fp_cld 1lib status = user cld lib status,

T I

User_Init Return_ Code user_init (void)

{

static unsigned char user init state =
CLD RV cld rv = CLD ONGOING;
User Init Return Code init return code

switch (user init state)

{

}

case 0O:

0;

= USER INIT ONGOING;

/* TODO: add any custom User firmware initialization */

user init state++;
break;
case 1:

/* Initialize the CLD Library */
cld rv = cld _sc598_audio_2 0_1lib init(&user_audio_init_params) ;

if (cld rv == CLD SUCCESS)

{
/* Connect to the USB Host
cld 1ib usb_connect();

*/

init return code = USER INIT SUCCESS;

}
else if (cld rv == CLD FAIL)

{

init return code = USER INIT FAILED;

}
else
{

init return code

}

return init return code;

void user main (void)

{

cld_sc598 audio 2 0_1lib main();

static CLD RV user_init usb phy (void)

{

}

static void user_ usb_event

{

USER_INIT ONGOING;

/* TODO: Reset and configure the USB Phy. */

switch (event)

{

case CLD USB CABLE CONNECTED:
/* TODO: Add any User firmware
break;
case CLD USB CABLE DISCONNECTED:
/* TODO: Add any User firmware
disconnected. */
break;

case CLD USB ENUMERATED CONFIGURED:

/* TODO: Add any User firmware

(CLD_USB_Event event)

processed when a USB cable is connected.

processed when a USB cable 1is

processed when a Device has been

*/

49

enumerated. */
break;
case CLD USB UN CONFIGURED:
/* TODO: Add any User firmware processed when a Device USB Configuration
is set to 0.*/
break;
case CLD USB BUS RESET:
/* TODO: Add any User firmware processed when a USB Bus Reset occurs. */
break;

}

/* The following function will transmit the specified memory using
the Isochronous IN endpoint. */

static user_audio_transmit_isochronous_in_data (void)

{

static CLD USB Transfer Params transfer params;

transfer params.num bytes = /* TODO: Set number of IN bytes */

transfer params.p data buffer = /* TODO: address data */

transfer:params.cgllbagk.fp_usb_in_transfer_complete = /* TODO: Set to User
callback function or
CLD NULL */;

transfer params.callback.fp transfer aborted callback = /* TODO: Set to User
callback function or
CLD NULL */;

transfer params.transfer timeout ms = /* TODO: Set to desired timeout */;

if (cld_audio_2 0_1lib_ transmit audio_data (&transfer params) ==
CLD USB TRANSMIT SUCCESSFUL)

/* Isochronous IN transfer initiated successfully */
t
else /* Isochronous IN transfer was unsuccessful */
{
t

/* Function called when a Set Request is received */

static CLD USB Transfer Request Return Type user_ audio_set_req_cmd
(CLD Audio 2 0 Cmd Req Parameters * p reg params,
CLD USB Transfer Params * p transfer data)

p transfer data->p data buffer = /* TODO: address to store data */
p:transfer:data—>cgllbagk.fp_usb_out_transfer_complete =

user audio set req cmd transfer complete;
p_transfer data->fp transfer aborted callback = /* TODO: Set to User callback

function or CLD NULL */
/* TODO: Return how the Control transfer should be handled (Accept, Pause,
Discard, or Stall */
}

/* Function called when the Set Request data is received */
static CLD USB Data Received Return Type user_audio_set req cmd transfer complete
(void)
{
/* TODO: Return if the received data is good (CLD USB DATA GOOD) or bad
(CLD USB_DATA BAD STALL) */
}

/* Function called when a Get Request is received */
static CLD USB Transfer Request Return Type user_audio_get_ req _cmd
(CLD_Audio 2 0 Cmd Req Parameters * p req params,

[50 L

CLD USB Transfer Params * p transfer data)

p_transfer data->p data buffer = /* TODO: address to source data */
p_transfer data->callback.fp usb in transfer complete =
user audio get req cmd transfer complete;
p_transfer data->fp transfer aborted callback = /* TODO: Set to User callback
function or CLD NULL */
/* TODO: Return how the Control transfer should be handled (Accept, Pause,
Discard, or Stall */

}

/* Function called when the Get Request data has been transmitted */
static void user_ audio_get_req_cmd transfer complete (void)

{
/* TODO: The Get Request data has been sent to the Host, add any

User functionality. */

static void user_ audio_streaming rx endpoint enabled (CLD Boolean enabled)
{
if (enabled == CLD TRUE)
{
/* TODO: Add Isochronous OUT endpoint enabled User functionality. */
}
else
{
/* TODO: Add Isochronous OUT endpoint disabled User functionality. */
}

static void user_ audio_streaming tx endpoint enabled (CLD Boolean enabled)
{
if (enabled == CLD TRUE)
{
/* TODO: Add Isochronous IN endpoint enabled User functionality. */
}
else
{
/* TODO: Add Isochronous IN endpoint disabled User functionality. */

}

static void user_cld lib_status (unsigned short status code, void * p additional data,
unsigned short additional data size)
{
/* TODO: Process the library status if needed. The status can also be decoded to
a USB readable string using cld lib status decode as shown below: */

char * p str = cld lib_status_decode(status_code, p_additional_data,
additional data size);

S

	Disclaimer
	Introduction
	USB Background
	CLD Library USB Enumeration Flow Chart
	CLD Library Interrupt IN Flow Chart
	CLD Audio 2.0 Library Isochronous OUT Flow Chart
	CLD Audio 2.0 Library Isochronous IN Flow Chart

	USB Audio Device Class v2.0 Background
	Isochronous Endpoint Bandwidth Allocation
	USB Audio Device Class v2.0 Control Endpoint Requests
	USB Audio Device Class v2.0 Set Request
	CLD SC598 Audio Device Class v2.0 Set Request Flow Chart

	USB Audio Device Class v2.0 Get Request
	CLD SC598 Audio Device Class v2.0 Get Request Flow Chart

	Dependencies
	CLD SC598 Audio 2.0 Library Scope and Intended Use
	CLD Audio 2.0 Example v1.02 Description
	Running the Example Project

	CLD SC598 Audio 2.0 Library API
	cld_sc598_audio_2_0_lib_init
	Arguments
	Return Value
	Details

	cld_sc598_audio_2_0_lib_main
	Arguments
	Return Value
	Details

	cld_audio_2_0_lib_receive_stream_data
	Arguments
	Return Value
	Details

	cld_audio_2_0_lib_transmit_audio_data
	Arguments
	Return Value
	Details

	cld_audio_2_0_w_transmit_interrupt_data
	Arguments
	Return Value
	Details

	cld_audio_2_0_lib_transmit_audio_rate_feedback_data
	Arguments
	Return Value
	Details

	cld_audio_2_0_lib_resume_paused_control_transfer
	Arguments
	Return Value
	Details

	cld_lib_usb_connect
	Return Value
	Details

	cld_ lib_usb_disconnect
	Return Value
	Details

	cld_time_125us_tick
	Arguments
	Return Value
	Details

	cld_usb0_isr_callback
	Arguments
	Return Value
	Details

	cld_time_get
	Arguments
	Return Value
	Details

	cld_time_passed_ms
	Arguments
	Return Value
	Details

	cld_time_get_125us
	Arguments
	Return Value
	Details

	cld_time_passed_125us
	Arguments
	Return Value
	Details

	cld_lib_status_decode
	Arguments
	Return Value
	Details

	cld_lib_access_usb_phy_reg
	Arguments
	Return Value
	Details

	Adding the CLD SC598 Audio 2.0 Library to an Existing CrossCore Embedded Studio Project
	User Firmware Code Snippets
	main.c
	user.c

